4.3 One-Dimensional Finite Square Well (First Type)

$$
V(x)= \begin{cases}0 & |x|<a \tag{4.44}\\ V_{0} & |x|>a\end{cases}
$$

Consider a particle of mass m moving in this potential with energy E.
Case One: When $\boldsymbol{E}<\boldsymbol{V}_{\mathbf{0}}$. The particle is confined in a bound state.
Inside the well the time-independent Schrödinger equation is

$$
\begin{array}{ll}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi, & |x|<a \\
\frac{d^{2} \psi}{d x^{2}}+k^{2} \psi=0, & k^{2}=\frac{2 m E}{\hbar^{2}} \tag{4.45}
\end{array}
$$

The general solution of this equation is

$$
\begin{equation*}
\psi(x)=A \sin k x+B \cos k x \tag{4.46}
\end{equation*}
$$

Outside the well the equation is
or

$$
\begin{align*}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}+V_{0} \psi & =E \psi, \quad|x|>a \\
\frac{d^{2} \psi}{d x^{2}}-K^{2} \psi & =0, \quad K^{2}=\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}} \tag{4.47}
\end{align*}
$$

Since $V_{0}>E$, the quantity K^{2} is positive. Therefore, the general solution of this equation is

$$
\begin{equation*}
\psi(x)=C e^{-K x}+D e^{K x} \tag{4.48}
\end{equation*}
$$

The wave function should not become infinite as $x \rightarrow \pm \infty$. Therefore, we must take $C=0$ for $x<-a$ and $D=0$ for $x>a$. So, the wave function can be written as

$$
\psi(x)= \begin{cases}D e^{K x} & x<-a \tag{4.49}\\ A \sin k x+B \cos k x & -a<x<a \\ C e^{-K x} & x>a\end{cases}
$$

The requirement that $\psi(x)$ and $\frac{d \psi}{d x}$ be continuous at $x=-a$ gives
and $\quad k A \cos k a+k B \sin k a=K D e^{-K a}$
Similarly, the continuity of $\psi(x)$ and $d \psi / d x$ at $x=a$ gives

$$
\begin{align*}
A \sin k a+B \cos k a & =C e^{-K a} \tag{4.52}\\
\text { and } \quad k A \cos k a-k B \sin k a & =-K C e^{-K a} \tag{4.53}
\end{align*}
$$

Equations (4.50) and (4.52) give

$$
\begin{align*}
2 A \sin k a & =(C-D) e^{-K a} \tag{4.54}\\
2 B \cos k a & =(C+D) e^{-K a} \tag{4.55}
\end{align*}
$$

Equations (4.51) and (4.53) give

$$
\begin{align*}
2 k A \cos k a & =-K(C-D) e^{-K a} \tag{4.56}\\
2 k B \sin k a & =K(C+D) e^{-K a} \tag{4.57}
\end{align*}
$$

Equations (4.54) and (4.56) yield

$$
\begin{equation*}
k \cot k a=-K \tag{4.58}
\end{equation*}
$$

unless $A=0$ and $C=D$. Similarly, Equations (4.55) and (4.57) yield

$$
\begin{equation*}
k \tan k a=K \tag{4.59}
\end{equation*}
$$

unless $B=0$ and $C=-D$.
Eliminating K from (4.58) and (4.59) leads to $\tan ^{2} k a=-1$ which is not possible because both k and a are real. Therefore, these two equations cannot be valid simultaneously.

We have two classes of solutions:
For the first class

$$
\begin{equation*}
A=0, C=D \quad \text { and } \quad k \tan k a=K \tag{4.60}
\end{equation*}
$$

and for the second class

$$
\begin{equation*}
B=0, C=-D \quad \text { and } \quad k \cot k a=-K \tag{4.61}
\end{equation*}
$$

Eigenfunctions

The eigenfunctions of the first class are given by

$$
\psi(x)= \begin{cases}C e^{K x} & x<-a \tag{4.62}\\ B \cos k x & -a<x<a \\ C e^{-K x} & x>a\end{cases}
$$

The eigenfunctions of the second class are given by

$$
\psi(x)= \begin{cases}C e^{K x} & x<-a \tag{4.63}\\ A \sin k x & -a<x<a \\ -C e^{-K x} & x>a\end{cases}
$$

It is interesting to note that the eigenfunctions extend into the classically forbidden region $|x|>a$. The distance through which they extend is roughly $K^{-1}=\hbar /\left[2 m\left(V_{0}-E\right)\right]^{1 / 2}$, which increases as the energy E of the particle increases.

Parity

It may be noted, as in the case of the infinite square well, that the eigenfunctions of the first class have even parity, satisfying

$$
\psi(-x)=\psi(x)
$$

and the eigenfunctions of the second class have odd parity, satisfying

$$
\psi(-x)=-\psi(x)
$$

This division of eigenfunctions into even and odd types is due to the fact that the potential energy is symmetric about the origin, that is, $V(-x)=V(x)$.

Energy Levels: The energy levels can be found by solving the equations (4.60) and (4.61) numerically or graphically.

Figure: Graphical determination of the energy levels for a square well potential.
As, $\xi=k a, \eta=K a$ and $\gamma=\sqrt{2 m V_{o} a^{2} / \hbar^{2}}$

4.4 One-Dimensional Finite Square Well (Second Type)

It should be noted that the potentials in First type and Second type differ only in the origin of the energy scale and are, therefore, physically equivalent.

We shall discuss the case $E<0$ which gives rise to bound states. Inside the well the timeindependent Schrödinger equation is,
or

$$
\begin{array}{r}
-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}-V_{0} \psi=E \psi=-|E| \psi, \quad|x|<a \\
\frac{d^{2} \psi}{d x^{2}}+\alpha^{2} \psi=0, \quad \alpha^{2}=\frac{2 m\left(V_{0}-|E|\right)}{\hbar^{2}} \tag{4.65}
\end{array}
$$

Here $|E|=-E$ is the binding energy of the particle in the well. Since $V_{0}>|E|$, the quantity α^{2} is positive. Therefore, the general solution of this equation is,

$$
\begin{equation*}
\psi(x)=A \sin \alpha x+B \cos \alpha x \tag{4.66}
\end{equation*}
$$

Outside the well the equation is

$$
\begin{align*}
& -\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi}{d x^{2}}=E \psi=-|E| \psi, \quad|x|>a \\
& \frac{d^{2} \psi}{d x^{2}}-\beta^{2} \psi=0, \quad \beta^{2}=\frac{2 m|E|}{\hbar^{2}} \tag{4.67}
\end{align*}
$$

The general solution of this equation is,

$$
\begin{equation*}
\psi(x)=C e^{-\beta x}+D e^{\beta x} \tag{4.68}
\end{equation*}
$$

The wave function should not become infinite as $x \rightarrow \pm \infty$. Therefore, we must take $C=0$ for $x<-a$ and $D=0$ for $x>a$. So the wave function can be written as,

$$
\psi(x)= \begin{cases}D e^{\beta x} & x<-a \tag{4.69}\\ A \sin \alpha x+B \cos \alpha x & -a<x<a \\ C e^{-\beta x} & x>a\end{cases}
$$

Imposing that $\psi(x)$ and $d \psi / d x$ be continuous at $x \pm a$ and doing the same treatments as in the previous section, we obtain two classes of solutions:

The eigenfunctions of the first class are given by

$$
\psi(x)= \begin{cases}C e^{\beta x} & x<-a \tag{4.70}\\ B \cos \alpha x & -a<x<a \\ C e^{-\beta x} & x>a\end{cases}
$$

The eigenfunctions of the second class are given by

$$
\psi(x)= \begin{cases}C e^{\beta x} & x<-a \tag{4.71}\\ A \sin \alpha x & -a<x<a \\ -C e^{-\beta x} & x>a\end{cases}
$$

The energy levels can be found by solving the equations

$$
\begin{aligned}
& \xi \tan \xi=\eta \\
& \xi \cot \xi=-\eta
\end{aligned}
$$

where $\xi=\alpha a$ and $\eta=\beta a$. These equations can be solved to obtain the energy levels following the same procedure as in the previous section.

